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Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and a leading cause of cancer-related deaths. 
Standard treatments, such as surgery, chemotherapy, and radiotherapy, frequently fail to produce positive therapeutic out-
comes. Thus, it is essential to identify new treatment modalities with improved survival rates. Extracellular vesicles (EVs) 
are nanosized lipid bilayer vesicles secreted by cells that mediate intercellular communication. EVs have been used to de-
liver several non-coding RNAs (ncRNAs), including miRNA, circRNA, and lncRNA. These ncRNAs demonstrate excellent 
tumor-suppressive effects and serve as new therapeutic candidates for HCC. EVs possess several characteristics, including 
high biocompatibility, enhanced stability, and limited cytotoxicity, making them promising drug-delivery vehicles. Although 
these characteristics make them better drug carriers than traditional synthetic delivery vehicles, translating engineered EVs 
into clinical practice has been challenging. In this review, we summarise the tumor-suppressive roles of ncRNAs, the recent 
progress of EV-associated ncRNAs in HCC treatment, unique features of EVs relevant to drug delivery, and current challenges 
in the clinical translation of EVs.
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Introduction
Hepatocellular carcinoma (HCC) is one of the main causes of 
cancer-related deaths globally and is the most common type of pri-
mary liver cancer, accounting for 70–90% of all cases.1 Hepatic 
resection and liver transplantation are the most effective curative 
treatments for HCC. Nonetheless, HCC resection in patients with 

non-cirrhotic livers has a mortality rate as high as 20%; further-
more, the outcome of liver transplantation is unsatisfactory, with a 
10-year survival rate of only 50%. Moreover, hepatic resection is 
associated with a high recurrence rate of 70% at five years, even 
in patients with tumor sizes as small as ≤2 cm.2 Although the re-
currence rate following liver transplantation is relatively low, the 
waiting period for transplantation has been increasing over the 
years owing to organ shortages, resulting in high patient dropout 
rates. Finding new treatment modalities with better prognoses is 
essential for physicians and researchers.

Extracellular vesicles (EVs) are small particles released by 
almost all cell types in the human body. Numerous names exist 
across the literature, referring to EVs of various origins, natures, 
and features.3 EVs are classified into two major subtypes, mi-
crovesicles (MVs) and exosomes. These subtypes have different 
origins; MVs are formed by budding off the plasma membrane, 
whereas exosomes are derived from endosomal compartments.4 
Studies have shown that EVs are more than just waste carriers; 
they are essential in mediating cell-cell communication. EVs carry 
a variety of components ranging from nucleic acids to proteins, 
lipids, and metabolites.5 Notably, cancer cells induce phenotypic 
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reprogramming of recipient cells by transferring molecules con-
tained in EVs. The tumor microenvironment can also be altered by 
EVs, thereby promoting tumor cell proliferation, invasion, and me-
tastasis.6,7 The secretion and uptake of EVs involve several steps, 
from the budding of the donor cell plasma membrane to docking 
and fusion at the recipient cell surface. Through this process, EV 
cargoes can enter the recipient cell and subsequently activate sign-
aling pathways that result in various physiological changes.8 The 
detailed mechanisms of secretion and uptake of EVs are reviewed 
elsewhere.9,10 To date, a substantial amount of literature has report-
ed the secretion of EVs by cancer cells. However, few studies have 
investigated the uptake of EVs by cancer cells. Pi et al. modified 
exosomes with folate to enhance their binding to cancer cells with 
overexpression of folate receptors. The engineered exosomes suc-
cessfully delivered siRNAs to cancer cells, with a significant sup-
pressive effect on cancer progression.11 Other studies successfully 
incorporated miRNA inhibitors (anti-miR-912 and anti-miR-21413) 
into EVs to overcome the drug resistance of cancer cells. These 
findings highlight the feasibility and effectiveness of EVs for drug 
delivery to cancer cells.

Non-coding RNAs (ncRNAs) are a subtype of RNA not in-
volved in protein-coding. They account for more than 90% of the 
RNAs made from the human genome and regulate gene expres-
sion.14 Studies have consistently demonstrated that EVs contain 
several ncRNA species, including microRNAs (miRNAs), cir-
cular RNAs (circRNAs), and long ncRNAs (lncRNAs). Further-
more, exosomal ncRNAs participate in cancer regulation.15–18 
Adams et al. showed that miR-34a is a tumor-suppressive miRNA 
that inhibits cancer cell proliferation and invasion and is a direct 
downstream target of p53.15 In a large-scale analysis of miRNA 
profiles from samples, including lung, breast, stomach, prostate, 
colon, and pancreatic tumors, several miRNAs were significantly 
downregulated in cancer cells.16 Lu et al. showed that the tumor-
suppressive lncRNA MEG3 was significantly downregulated in 
lung cancer cells, subsequently suppressing p53 expression that 
induces increased cell proliferation.17 In vivo experimental evi-
dence identified GAS5 as another tumor-suppressive lncRNA that 
is downregulated in breast cancers.18 In this review, we discuss the 
tumor-suppressive functions of ncRNAs and summarise the recent 
progress in developing EVs as ncRNA delivery vehicles in treat-
ing HCC. Additionally, we present the unique features of EVs that 
make them a good candidate for cancer therapeutics and highlight 
the current understanding of the challenges associated with the 
clinical translation of EVs.

Functions of non-coding RNAs in HCC

LncRNAs act as miRNA sponges
Certain lncRNAs interact with miRNAs to act as molecular spong-
es. They sequester and inhibit the activity of miRNAs, thereby 
allowing the re-expression of miRNA target genes, which may 
include important tumor-suppressor genes.19 Therefore, lncRNAs 
indirectly regulate cell fate. Zhuang et al. found that miR-92b 
promotes HCC cell proliferation and metastasis by upregulat-
ing β-catenin signaling. They further found that Smad7, a direct 
target of miR-92b, was downregulated in HCC cells and that re-
expression of Smad7 significantly suppressed miR-92b-induced 
cell proliferation and metastasis. Notably, the lncRNA XIST was 
found to act as a miRNA sponge and inhibit HCC tumourigen-
esis by targeting miR-92b.20 Wang et al. showed that the lncRNA 
SENP3-EIF4A1 acts as a molecular sponge of miR-9-5p to protect 

the expression of the target gene ZFP36. Inhibition of miR-9-5p 
subsequently reverses HCC tumourigenesis by inducing apopto-
sis and reducing the invasiveness and metastatic potential of HCC 
cells.21 These studies support the tumor-suppressive role of lncR-
NAs and their function as miRNA sponges.

lncRNAs in protein regulation and interaction
lncRNAs can associate with proteins to modify their properties and 
functions. The tumor suppressor p53 is degraded by MDM2 via 
E3 ubiquitin ligase activity. Zhou et al. found that the p53-MDM2 
interaction was decreased in the lncRNA-PRAL-overexpressing 
HCC cells, with a corresponding increase in the HSP90-p53 in-
teraction and p53-induced HCC apoptosis. p53 utilizes HSP90 
for its efficient translocation into the nucleus. The interactions of 
lncRNA-PRAL with HSP90 and HSP90 with p53 were confirmed 
via co-immunoprecipitation, followed by Western blotting. These 
results revealed that lncRNA-PRAL promotes the interaction be-
tween HSP90 and p53 and hence, competitively inhibits p53 ubiq-
uitination by MDM2, thereby promoting HCC cell apoptosis.22 
Similarly, Qin et al. found that the lncRNA PSTAR could bind to 
the hnRNP K protein to strengthen its interaction with p53, thereby 
competitively blocking MDM2-dependent p53 ubiquitination and 
preventing HCC cells.23 These studies suggest that lncRNAs act 
as tumor suppressors by interacting with proteins and modulating 
their function.

circRNAs act as miRNA sponges
A substantial amount of literature suggests that certain circRNAs 
have multiple binding sites for miRNAs, indicating that circRNAs 
can act as miRNA sponges to reverse miRNA-mediated gene deg-
radation.24 Zhang et al. found that circTRIM33–12 eliminates the 
suppression of TET1 by sponging miR-191, and the knockdown of 
TET1 results in HCC cell proliferation, invasion, and migration. 
The TET1 protein can induce DNA demethylation, thus playing 
an important role in tumor suppression.25 Similarly, another group 
found that circMTO1 acts as a miR-9 sponge in HCC cells to liber-
ate downstream p21 expression. Silencing of circMTO1 in HCC 
can lead to the downregulation of p21, thereby promoting HCC cell 
proliferation and invasion.26 Many other circRNAs (circ_0091570, 
circ_0014717, and circRNA_101505) were also downregulated in 
HCC, and they all function as miRNA sponges.27–29

circRNAs in protein regulation and interaction
Specific circRNAs can interact with proteins. RNA-binding pro-
teins (RBPs) are necessary for the post-transcriptional modula-
tion of RNAs and the promotion of mRNA stability, localization, 
and translation. Zhu et al. found that circZKSCAN1 can act as 
an RBP (FMRP) sponge rather than a miRNA sponge to inhibit 
multiple malignant behaviors by suppressing HCC cell stemness. 
FMRP can bind to the mRNA of its target gene, CCAR1, which 
participates in the Wnt/β-catenin signaling pathway to upregulate 
cell stemness. circZKSCAN1 acts as an RBP sponge and blocks 
the binding between CCAR1 mRNA and FMRP, thus preventing 
the transcriptional activity of Wnt/β-catenin signaling.30 Similarly, 
Liu et al. found that circDLC1 can bind to the RBP HuR and pre-
vent its interaction with MMP1 mRNAs, inhibiting the expression 
of MMP1 and preventing HCC progression.31 On the other hand, 
Shi et al. identified the role of circRNAs as protein scaffolds. Re-
search has suggested that smaller circRNAs act as scaffolds to fa-
cilitate protein binding and interactions that are otherwise physi-
cally separated. It was found that circPABPC1 inhibits HCC cell 
adhesion and migration by directly binding to and downregulating 
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oncogenic ITGB1, a key molecule involved in HCC metastasis. 
circPABPC1 acts as a bridge to facilitate the interaction between 
ITGB1 and the proteasome in HCC cells, thus promoting protea-
some degradation.32 Taken together, these studies suggest that 
circRNAs elicit tumor-suppressive functions by interacting with 
other proteins.

miRNAs in cell cycle control
Several miRNAs regulate cell cycle progression. Xu et al. found 
that miR-195 was significantly downregulated in HCC cells. Over-
expression of miR-195 blocked G1/S transition and suppressed 
cancer cell proliferation. In terms of molecular mechanisms, miR-
195 directly inhibited cyclin D1 and CDK6, which are required 
to initiate Rb phosphorylation. Phosphorylated Rb suppresses the 
inhibition of E2F, which promotes the upregulation of proteins in-
volved in the S-phase entry. Hence, miR-195 may inhibit HCC pro-
gression by repressing Rb-E2F signaling that mediates the G1/S 
transition.33 Similarly, Kota et al. found that HCC cells exhibit 
reduced miR-26a expression. miR-26a expression induces G1 ar-
rest by directly targeting cyclin D2 and E2, which are essential for 
the G1/S transition. Overexpression of miR-26a in vivo resulted 
in the inhibition of HCC cell proliferation, induction of apoptosis, 
and inhibition of cancer progression.34 The above studies showed 
that miRNAs play a tumor-suppressive role by inhibiting cell cycle 
progression in HCC cells.

miRNAs in the regulation of angiogenesis and metastasis
miRNAs are also involved in metastasis and angiogenesis. Tsai et 
al. found that miR-122 was significantly downregulated in meta-
static HCC. Subsequently, ADAM17 was identified as a direct 
downstream target of miR-122, and its knockdown significantly 
reduced tumor migration, angiogenesis, and local invasion. This 
is likely due to the role of ADAM17 in activating certain EGF 
receptor ligands and modifying integrin signaling during cell adhe-
sion and migration.35 Fang et al. also found that miR-29b-overex-
pressed HCC cells exhibited a substantial decrease in microvessel 
density and metastatic potential. miR-29b inhibits angiogenesis 
and metastasis by downregulating MMP2, which assists the mi-
gration and proliferation of cancer cells by facilitating the remod-
eling of the extracellular matrix (ECM) and the release of ECM 
growth factors.36 Alpini et al. found that decreased miR-125b ex-
pression contributed to the invasive phenotype of HCC cells. miR-
125b suppresses cancer cell survival and tumor angiogenesis by 
targeting PGF, which may promote the recruitment of circulating 
hematopoietic progenitor cells and macrophages that contribute 
to tumor angiogenesis.37 Taken together, these studies show that 
miRNAs prevent HCC progression by inhibiting angiogenesis and 
metastasis (Fig. 1).

EVs loaded with non-coding RNAs as a therapy approach for 
HCC
EVs can be loaded with therapeutic cargoes such as ncRNAs and 
delivered to target tumor cells. Several studies have demonstrated 
that delivering tumor-suppressive ncRNAs via EVs successfully 
modifies cancer cell activities.38–43 Various methods have been 
used to load ncRNAs into EVs. These can be divided into two 
main categories: endogenous and exogenous. Endogenous load-
ing involves the direct addition of the donor cell ncRNA into EVs 
before shedding, whereas exogenous loading refers to the loading 
of the ncRNA into EVs once they are isolated and purified.38 After 
loading, the donor and recipient cells are co-cultured to transfer 

EVs from donor to recipient HCC cells.
MVs derived from mesenchymal stem cells (MSCs) can induce 

the reprogramming of cancer cells upon the active transfer of ncR-
NAs. HCC cells treated with MSC-derived MVs showed reduced 
proliferation and an increased number of cells in the G0-G1 phase. 
Consistently, increased cell cycle inhibitors were observed in these 
cells, suggesting that a block in the cell cycle progression led to the 
observed inhibition of HCC cell proliferation. However, the au-
thors did not further investigate the tumor-suppressive molecules 
present in these MVs.39 Alzahrani et al. identified miR-122 as a 
liver-specific miRNA downregulated in HCC cells. They reported 
an increase in the apoptosis of HCC cells following the injection of 
MSC-derived exosomes loaded with miR-122.40 Similarly, Fonsato 
et al. showed that the uptake of human liver stem cell-derived MVs 
by HCC cells resulted in a substantial decrease in tumor cell pro-
liferation and an increase in apoptosis. Several tumor-suppressive 
miRNAs in MVs have been reported, including miR451, miR223, 
miR24, miR125b, miR31, and miR122. Notably, proteins essential 
for cell cycle regulation were downregulated in HCC cells treated 
with MV, and these proteins are the downstream targets of the an-
titumor miRNAs present in MV.41

Additionally, cancer-associated fibroblasts (CAFs) are essen-
tial elements of the tumor microenvironment, which communicate 
with HCC cells and are, therefore, crucial for HCC therapy. Zhang 
et al. reported reduced miR-320a expression in CAF-derived ex-
osomes. Further investigations suggested that miR-320a plays an 
important tumor-suppressive role by binding to PBX3, suppress-
ing the activation of the MAPK pathway that promotes cell prolif-
eration and metastasis.42 In another study, Yugawa et al. suggested 
that CAFs may promote HCC progression via the production of 
interleukins, chemokines, and other growth factors. Based on this 
hypothesis, they found that miR-150-3p is significantly downregu-
lated in CAF-derived exosomes. Overexpression of miR-150-3p 
in these exosomes significantly inhibited HCC cell migration and 
invasion. Immunofluorescence further confirmed that miR-150-3p 
was transferred from the CAFs to the HCC cells.43

Most studies have identified exosomal miRNAs with antitu-
mor functions; however, other ncRNAs, such as circRNAs and 
lncRNAs, may also be important. Chen et al. found that patients 
with HCC exhibit lower circ-0051443 expression in plasma ex-
osomes than healthy individuals. Transfecting HCC cells with 
circ-0051443-expressing plasmid significantly inhibited the pro-
liferation of cancer cells. The proposed regulatory mechanism 
is that circ-0051443 acts as a ‘sponge’ to sequester miR-331-3p, 
resulting in downstream BAK1 gene transcription, which is im-
portant for cell death regulation and mitochondria-mediated apo-
ptosis.44 Wang et al. identified lncRNA SENP3-EIF4A1 as a mo-
lecular sponge of miR-9-5p, and its expression was significantly 
reduced in patients with HCC compared to healthy controls. When 
exosomal SENP3-EIF4A1 was transferred from healthy liver cells 
to HCC cells, apoptosis was increased, and the invasiveness and 
metastatic potential of HCC cells were decreased.21 These studies 
provide evidence for the use of EVs to deliver antitumor ncRNAs 
in HCC therapy.

Advantages of EV-based drug-delivery system

Safety profiles
Unlike synthetic drug-delivery systems, EVs are relatively safe 
and minimally reactive to the immune system because of their 
endogenous origin and high biocompatibility (Table 1). Synthetic 
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lipid nanoparticles (such as liposomes) have demonstrated enor-
mous potential for the delivery of nucleic acids, including RNAs. 
Nevertheless, adverse effects and safety concerns associated with 
the clinical application of synthetic lipid nanoparticles continue to 
exist. For instance, poly(ethylene glycol) (PEG), a commonly used 

hydrophilic polymer coating for drug-delivery vehicles to prevent 
opsonization and enhance water solubility, is associated with po-
tential side effects. PEG-coated liposomes may induce hypersensi-
tivity reactions, produce toxic side products, and change pharma-
cokinetic behavior by altering the circulation time of the enclosed 

Table 1.  Advantages and disadvantages of EV-based different drug-delivery systems

Advantages Disadvantages

Synthetic lipid 
nanoparticles

Easy to be modified, controllable size and shape PEG-coated nanolipids may induce toxic side 
effects and alter drug pharmacokinetic behavior

High scalability and reproducibility, easy for quality control Accumulation of lipids in the liver and spleen may  
cause pathological changes

Low manufacturing cost Not easily targetable

EV-based drug-
delivery system

Low immunogenicity Low scalability and reproducibility, 
difficult for quality control

Relatively low cytotoxicity when externally modified Low drug loading efficiency

High delivery efficiency due to membrane proteins and 
lipids that can bind specifically to receptors on target cells

Lack of development in modification techniques

EV, extracellular vesicle; PEG, poly(ethylene glycol).

Fig. 1. Exosomes can be used as a drug-delivery vehicle for delivering tumor-suppressive non-coding RNAs (long non-coding RNAs, circular RNAs, and 
micro RNAs) to HCC cells. HCC, hepatocellular carcinoma; RBP, RNA-binding proteins; circRNA, circular RNAs; lncRNA, long ncRNAs; miRNA, microRNAs.
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drugs.45 Additionally, it has been noted that synthetic lipid nano-
particles might induce toxic immune responses in vivo, causing 
liver injury in rodents. This might be explained by the cytotoxicity 
of the lipid materials and their ability to induce a dramatic proin-
flammatory response.46 In contrast, Kamerkar et al. showed that 
exosomes were better siRNA-delivering vehicles than liposomes, 
as they suppressed KRAS-mutated cancers without inducing any 
obvious adverse immune responses. Moreover, plasma membrane-
like phospholipids and membrane proteins of exosomes may pre-
vent them from being quickly eliminated from circulation.47 More 
importantly, no detectable toxicity or inflammatory response was 
noted, even when exosomes were externally modified with li-
gands to enhance delivery and uptake.48 Although some studies 
have suggested that nanoparticles, including EVs, tend to accu-
mulate in the liver in vivo, Saleh et al. confirmed that EVs induced 
minimal hepatotoxicity and immunogenicity, as the uptake of EVs 
into HepG2 cells did not show notable changes in histopathology, 
proinflammatory cytokine levels, or liver transaminases.49 These 
findings showed that EVs are generally well-tolerated and may be 
better candidates than other synthetic drug-delivery systems.

Enhanced drug delivery with modification
EVs can be modified using various strategies to improve their 
tumor-targeting ability and drug-delivery efficiency. Passive or ac-
tive loading methods are used to enhance the loading of exogenous 
cargo. Passive loading refers to the incubation of EVs with thera-
peutic drugs. This method generally does not damage the structure 
of EVs and is highly effective for hydrophobic drugs with poor 
solubility. Active loading refers to loading therapeutic drugs into 
EVs, mainly by electroporation, sonication, extrusion, freeze-thaw 
cycles, and saponins. The details of these methods are listed in 
Table 2. Kim et al. compared different drug loading methods and 
showed that all active loading methods achieved higher loading ef-
ficiencies than passive loading, especially sonication.50 However, 
the most appropriate loading method depends on the chemical and 
physical properties of the cargo. For instance, small and hydropho-
bic molecules can easily cross the hydrophobic membrane of EVs; 
hence, coincubation would be suitable in this case. Electroporation 
and sonication are the best approaches for small RNAs (siRNA 
and miRNA) that require higher loading efficiencies.51,52 To facili-

tate specific binding and uptake by cancer cells, EV surfaces are 
modified using either covalent or non-covalent methods. Covalent 
modifications mainly involve chemical conjugation, attaching li-
gands to the EV surfaces. This method generally does not affect 
the structural integrity of EVs; however, it depends on carefully 
controlling the modification conditions (such as temperature, pres-
sure, and pH) to avoid denaturing them.53 Non-covalent modifi-
cation involves electrostatic and ligand-receptor interactions. The 
EV surfaces are negatively charged, thereby allowing the binding 
of positively charged molecules via electrostatic interactions. Zhan 
et al. showed that attaching a cationic lipid-sensitive endosomo-
lytic peptide, L17E, to the EVs surface enhanced miRNA release 
and strongly suppressed tumor progression without apparent ad-
verse effects.54 In contrast, hydrophobic ligands can be integrated 
into the EV membranes via hydrophobic interactions. Cheng et al. 
showed that integrating nuclear localization signal peptides to the 
EV surfaces greatly enhanced the nuclear delivery of cargo, thus 
inhibiting tumor growth.55 Taken together, EVs can be modified 
using several bioengineering methods to achieve enhanced target-
ability and drug-delivery efficiency.

Challenges of EV-based drug delivery
Although in vivo studies have shown promising progress in EV-
based drug delivery, several challenges may hinder the clinical 
translation and application of EVs. First, a major bottleneck is 
the massive production of engineered clinical-grade EVs. This 
refers to the sterile production of EVs in large batches sufficient 
for clinical testing without batch-to-batch variation and decreased 
effectiveness. Currently, no viable approach satisfies the desired 
standards for large-scale EV production. Traditional methods, such 
as ultracentrifugation, have limitations, including low produc-
tion yield, non-exosomal contaminants, and poor reproducibility. 
Large-scale manufacturing of sterile EVs can be achieved using 
a bioreactor-based culture system and developing a streamline-
based microfluidic filtration device for efficient purification.56,57 
Second, achieving a higher drug loading efficiency for EVs is 
needed. Vader et al. suggested that the loading efficiency of EVs 
is relatively low compared to that of synthetic liposomes.58 This 
may be because EVs develop a high proportion of parental ma-

Table 2.  Passive and active loading methods to enhance tumor-targeting ability and drug-delivery efficiency

Strategies Methods Description Advantages Disadvantages
Passive 
loading

Simple 
incubation

EVs are co-incubated with drugs 
at room temperature

Simple and 
straightforward

Limited by the volume of EVs 
and small membrane pore size

Active 
loading

Electroporation Uses electrical current to increase 
the permeability of EV membranes 
to allow rapid drug entry

High loading efficiency; 
Ability to load 
large molecules

Disruption of EV membrane 
integrity; EV aggregation

Sonication Ultrasound probe with different amplitude 
is used to permeabilize the EV membrane

High loading efficiency Disruption of EV 
membrane integrity

Extrusion An extruder is used to squeeze 
the cells co-cultured with the drug 
to complete drug loading

High loading efficiency; 
Short duration

Disruption of EV 
membrane integrity

Freeze-thaw 
cycle

Formation of temporary pores on 
EV membrane through several 
rapid freeze-thaw cycles

No change in the EV 
surface charge

Low loading efficiency 
due to EV aggregation

Saponin Form pores on EV membrane through 
interactions with cholesterol

Higher loading efficiency Disruption of EV 
membrane integrity

EV, extracellular vesicle.
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terials during their formation, leaving a limited loading space for 
exogenous drugs. Additionally, the loading capacity of EVs may 
be affected by their various chemical and lipid components; hence, 
it is important to choose an appropriate method for optimizing 
the loading efficiency of EVs. The characteristics of each load-
ing method are presented in Table 2. Third, more comprehensive 
preclinical examinations should be conducted to prevent potential 
adverse effects, particularly those related to pharmacokinetics, 
pharmacodynamics, toxicity, and dosage. Some researchers have 
argued that EVs produced from immortalized cell lines may carry 
oncogenic materials. However, different immortalized cell lines 
have been commonly used for EV production owing to their infi-
nite supply and high proliferation rate. As a safe drug carrier, EVs 
are minimally reactive to the host immune system and are derived 
from healthy human cells. For example, Zhu et al. showed that 
administering EVs derived from human embryonic kidney cells 
to mice for three weeks induced no adverse side effects. The engi-
neered type of EVs showed notable clinical benefits, as the loaded 
miR-199a-3p significantly reduced the proliferation of CD44-pos-
itive HCC but not wild types.59 Moreover, modification and engi-
neering may alter the composition and content of EVs, reducing 
their effectiveness and immunogenicity. These potential adverse 
effects should be considered when developing new methods for 
EV modifications.

Future perspectives
Future studies should explore the therapeutic effects of EVs as 
ncRNA carriers for targeting HCC cells. To optimize EV use, it 
is important to understand the underlying mechanisms involved 
in the cellular sorting of cargoes, which may provide valuable in-
sights into the loading of ncRNAs into EVs. Moreover, EVs from 
various cell origins may interact differently with the same type of 
recipient cell; thus, a better understanding of this variation in EV 
transfer and uptake could improve therapeutic efficacy. Finally, 
understanding the components of the EV membranes and selecting 
appropriate modification techniques are essential for EV modifica-
tions. This would avoid structural changes to the EV membranes 
and preserve their physicochemical stability.

Conclusions
EVs have enormous potential as drug-delivery vehicles for cancer 
therapeutics. In this review, we identified several ncRNAs (miR-
NAs, circRNAs, and lncRNAs) that play a crucial role in tumor 
suppression. Several studies have successfully introduced ncR-
NAs into engineered EVs, significantly inhibiting HCC progres-
sion. Targets such as β-catenin, which are not readily targetable by 
small molecules, can be targeted using siRNA or miRNA; hence, 
the RNA-targeting approach is an attractive strategy for the modu-
lation of gene expression. Despite all the challenges and questions 
to be addressed, EVs may still provide hope for developing new 
treatment modalities against the deadly HCC.
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